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A B S T R A C T   

Adverse drug reaction (ADR) detection is an important issue in drug safety. ADRs are health threats caused by 
medication. Identifying ADRs in a timely manner can reduce harm to patients and can also assist doctors in the 
rational use of drugs. Many studies have investigated potential ADRs based on social media due to the openness 
and timeliness of this resource; however, they have ignored the fine-grained emotional expression in social media 
text. In addition, the benchmark datasets from social media are usually small, which can result in the problem of 
over-fitting. In this paper, we propose the Adversarial Neural Network with Sentiment-aware Attention (ANNSA) 
model, which enhances the sentimental element in social media and improves the performance of neural net-
works via data augmentation. Specifically, a sentiment-aware attention mechanism is proposed to extract the 
word-level sentiment features associated with sentiment words and learn task-related information by optimizing 
a task-specific loss. For low-resource datasets, we use an adversarial training approach to generate perturbations 
of the word embeddings via an implicit regularization technique. ANNSA was tested on three social media ADR 
detection datasets, namely, Twitter, TwiMed (Twitter) and CADEC. The experimental results indicated the ability 
to achieve F1 values of 48.84%, 64.18% and 83.06%, respectively, comparable to the best results reported for 
state-of-the-art methods. Our study demonstrates that sentiment words are highly correlated with ADRs and that 
word-level sentiment features can assist in detecting ADRs from social media datasets.   

1. Introduction 

Adverse drug reactions (ADRs) refer to the harmful reactions that 
occur when normal doses of drugs are used. ADRs seriously endanger the 
health of individuals and cause enormous economic losses to the med-
ical system and society. Adverse events resulting from the use of mar-
keted drugs are a major public health problem, accounting for 28% of 
emergency room visits, 5% of hospital admissions, and 5% of hospital 
deaths [1,2]. Annually, the expenses due to ADRs are up to $75 billion 
[3]. Therefore, the timely and accurate detection of ADRs is essential to 
prevent adverse reactions caused by medication and reduce medical 
costs [4]. 

Generally, before a drug is marketed, a large number of clinical trials 
are performed to identify ADRs. However, it is difficult to identify all 
potential ADRs due to time and cost limitations. Thus, there is still a 
need to identify ADRs from multiple sources after a drug is marketed 
[5–8]. In early works, researchers mainly relied on a spontaneous 

reporting system consisting of compulsive and voluntary reporting of 
suspected adverse drug events (ADEs) by pharmaceutical companies, 
consumers, and health care professionals. The US Food and Drug 
Administration (FDA) Adverse Event Reporting System (FAERS) is one 
of the most prominent spontaneous reporting systems [4]. However, due 
to the complicated approval steps involved, the update speed and ac-
curacy of these systems are usually poor. Therefore, researchers prefer to 
identify ADRs from other, relatively real-time resources. 

With the development of the Internet, social media has provided 
people with a platform for sharing information with each other. Some 
patients want to communicate their feelings after taking medication 
with other patients through social media. Although information from 
medical systems (e.g., FAERS) is more authoritative than that from so-
cial media, these open sources (e.g., Twitter) can also serve as a refer-
ence to provide a direction for ADR research. In recent years, social 
media has been widely used as a data source for ADR detection. 

A person’s emotional state may be affected by physical discomfort. 
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The social media posts of patients are related to their opinions and 
feelings and contain rich emotional components. Numerous studies have 
shown that there are strong emotional components in social media, such 
as microblogs [9] and Twitter [10], as they are often resources for 
sentiment analysis [11], user stance detection [12], and opinion mining 
[13]. Moreover, researchers have proposed that sentiment analysis 
should be effective in extracting ADRs from social media text [14]. 
Accordingly, previous studies [10,14] have integrated sentiment infor-
mation by directly concatenating the representations of sentences and 
the scores of sentence-level sentiment polarity. However, sentence-level 
sentiment score features provide only a rough basis for learning senti-
ment information from different sentiment words in sentences. 

Another issue with ADR detection is that the datasets extracted from 
social media tend to be small. Previous works have handled this problem 
by introducing external resources [15], adding annotated training sets to 
the original data [16], or using multi-task learning methods [17,18] to 
jointly train a model on the named entity recognition (NER) and ADR 
detection tasks. Although these approaches have enabled great im-
provements in ADR detection, they usually require external data support 
and extra annotation workloads. Hence, we hope to increase the di-
versity of training sets without the use of any additional resources. 

To address the above problems, we propose the Adversarial Neural 
Network with Sentiment-aware Attention (ANNSA) model for ADR 
detection on social media. Instead of simply concatenating the scores of 
sentence-level sentiment polarity with the representations of sentences, 
we apply a sentiment-aware attention mechanism to extract word-level 
sentiment features by learning a weight matrix of sentiment words for 
sentences. In this way, the information from sentiment words can 
directly influence the computation of sentence representations. The 
resulting sentiment-aware representations of sentences also help the 
model learn task-related information. Additionally, regarding the sta-
tistics of the sentiment words of sentences, we find that sentiment words 
obviously overlap with ADR mentions. Thus, through the introduction of 
word-level sentiment features, ANNSA is able to pay more attention to 
ADR mentions. 

Inspired by adversarial training [19], we introduce an adversarial 
perturbation method for word embeddings that not only improves 
model robustness without requiring additional training sets but also 
effectively prevents over-fitting when using a small-scale corpus. In our 
adversarial perturbation approach, adversarial samples are created by 
making small modifications to word embeddings. In the training phase, 
we minimize an additional regularization cost to resist such perturba-
tions to make the model more robust to unseen datasets. Additionally, to 
address the misspelling problem in social media text, we introduce a 
convolutional neural network (CNN) that operates at the character level 
to learn lexical patterns. Finally, we report a massive experiment con-
ducted on multiple social media ADR corpora to assess the performance 
of ANNSA. The significance of our research is that ANNSA can identify 
some potential adverse reactions in real-world scenarios and can help 
support pharmaceutical research and development. 

Based on the above discussion, our contributions are as follows. 
1. We present a sentiment-aware attention mechanism that can 

capture sentiment features at the word level and help to learn task- 
related information for ADR detection. Experimental results show that 
this mechanism helps the resulting model pay more attention to ADR 
mentions. 

2. To address the issue of small social media datasets, we apply an 
adversarial perturbation mechanism in ANNSA. This mechanism can 
improve the generalization ability of ANNSA via data augmentation 
without any external resources. 

3. We report an experiment conducted on three different widely used 
social media ADR datasets. The results demonstrate that our proposed 
method makes significant progress in solving the previously presented 
problems. 

2. Related work 

2.1. ADR detection based on social media 

Early studies on ADR detection were often based on data such as 
those from spontaneous reporting systems (SRSs) [20] and clinical re-
ports [21]. Due to the advantages of social network data [22,23] con-
cerning ADRs, social media data present both unique challenges and 
interesting opportunities for natural language processing (NLP) methods 
for ADR detection [16]. The initial research mainly used lexicon-based 
approaches [24] to identify ADRs in text. When there were no labelled 
data available, researchers tended to use unsupervised methods [25] for 
statistical analysis. More recently, a growing trend towards imple-
menting ADR detection through supervised methods has emerged. In 
these methods, researchers [26–29] combine various machine learning 
classifiers with various features to automatically extract and classify 
messages. These methods focus on shallow language features and do not 
capture deep semantic features or contextual representations of 
sentences. 

In recent years, with the development and application of deep 
learning methods, many neural network methods have been applied to 
ADR detection tasks. Wu et al. [30] developed an approach with multi- 
head self-attention and hierarchical tweet representation to detect 
ADRs. Lee et al. [31] used a semi-supervised deep learning model for 
ADR detection in tweets. Li et al. [15] introduced an adversarial transfer 
learning method for ADR detection, which can improve the results ob-
tained on small datasets. 

Some studies have suggested that sentiment information is helpful 
for ADR detection [32]. Inspired by this, many approaches for inte-
grating sentiment information have been proposed, such as introducing 
sentiment score features or sentiment word frequency into ADR detec-
tion [16]. Shen et al. [14] utilized a multi-channel CNN to identify ADRs 
using a sentiment score. They concatenated the sentence representation 
and the sentiment score as the input to the final prediction layer to 
classify text. Li et al. [10] used a model integrating medical knowledge 
and sentiment expression to detect ADRs. They obtained sentiment 
scores using Bidirectional Encoder Representations from Transformers 
(BERT) via pre-training on a large number of sentiment analysis data-
sets. Most previous works have used a sentiment score as a sentence- 
level feature but have not explored the relationship between the senti-
ment words and sentences. Alhuzali et al. [33] classified the sentiment 
polarity of affairs in tweets and applied transfer learning to detect ADRs 
in tweets. They measured the word coverage between the sentiment 
analysis corpus and the ADR corpus on all words. Since both datasets 
contained a number of common words, the statistical results were 
insufficient to show the relationship between sentiment words and 
ADRs. In this paper, we consider a sentiment-aware representation 
without noise instead of an affective polarity score and explore the 
relation between sentiment words and adverse reactions. 

2.2. Adversarial training 

The concept of adversarial training [34] originates from generative 
adversarial networks (GANs) [35], which are widely applied in com-
puter vision. Generally, the goal of adversarial training is to use un-
knowable perturbations to interfere with neural networks. In recent 
years, some studies have applied adversarial training to NLP tasks, such 
as text classification, aspect-based sentiment analysis (ABSA), NER, and 
part-of-speech (POS) tagging. Miyato et al. [36] added adversarial per-
turbations to word embeddings in a semi-supervised text classification 
model using adversarial training. Yasunaga et al. [37] applied adver-
sarial training to POS tagging and found that adversarial training can 
effectively prevent over-fitting for low-resource languages. Zhou et al. 
[38] used an adversarial transfer network with adversarial training to 
address low-resource NER. Karimi et al. [39] proposed that data similar 
to the training set can be produced through adversarial training, an 
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approach that can be applied to the embedding space to make neural 
networks more robust. 

These works indicate that adversarial training can allow significant 
results to be obtained on NLP tasks via data augmentation. Therefore, 
we apply adversarial training to improve the robustness and effectively 
improve the generalization ability of ADR detection when only a small 
amount of annotated data is available for training. 

3. Method 

In this paper, we regard the ADR detection task as a binary classifi-
cation task. The architecture of ANNSA is illustrated in Fig. 1. ANNSA 
consists of five components: (1) an embedding layer that concatenates 
word-level embeddings with character-level embeddings, (2) a 
sentiment-aware attention mechanism that extracts word-level senti-
ment features by learning a compatibility matrix between sentences and 
sentiment words, (3) a feature extractor that captures contextual infor-
mation from the original and sentiment-aware representations using two 
bidirectional long short-term memory (Bi-LSTM) [40] layers, (4) an 
adversarial training mechanism that adds adversarial perturbations to 
the embedding layer for data augmentation, and (5) a predictor that 
predicts the results of ADR detection. We first list the symbols used and 
their definitions and then describe each part of the proposed model in 
detail. 

3.1. Problem formulation and definitions 

Given a sentence sequence X, {x1, x2, ⋯, xn}, ANNSA estimates 
whether this sentence contains evidence of ADRs. xi denotes the vector 
representation of the ith word, and n denotes the length of the sequence. 
The utilized symbols and their descriptions are listed in Table 1. 

3.2. Embedding layer 

ANNSA takes word-level embeddings xword
i ∈ Rew and character-level 

embeddings xchar
i ∈ Rec as inputs, where ew and ec represent the di-

mensions of the word-level and character-level embeddings, respec-
tively. Word-level embeddings are obtained by searching a pre-trained 
embedding matrix. For rare and out-of-vocabulary (OOV) words arising 
through colloquial expression on social media, we employ a character- 
level CNN (char-CNN) [41] to extract character-level features. The 
final word representation of word xi is the concatenation of the word- 
level and character-level embeddings, which is expressed as xi =

[xword
i ; xchar

i ] ∈ Rew+ec. 
Word-level embeddings. Word-level embeddings have been widely 

used for NER [38], sentiment analysis [42], text classification [43], and 
other NLP tasks. The most representative approaches for extracting word 
embeddings are Word2Vec [44] and Global Vectors for Word Repre-
sentation (GloVe) [45]. For the experiment reported in this paper, we 
downloaded a total of 2,680,617 MEDLINE abstracts from PubMed by 
using the query string “drug”. Then, these abstracts were used to train 
word embeddings by using Word2Vec [44] to convert one-hot encodings 
into continuous values in low dimensions and pre-train the word em-
beddings. In the vector space, words can be mapped to similar positions 
if they have similar meanings. The word embeddings for OOV words 
were randomly initialized. 

Character-level embeddings. The texts posted on social media are 
usually informal and colloquial and often even contain spelling errors. 
These attributes of social media may cause OOV problems such that 
vector representations cannot be found from pre-trained word embed-
dings. Regarding the characteristics of word-based morphology, words 
with the same structure tend to have similar meanings (such as suffixes 
or prefixes). The character-level embeddings we used were initialized 
randomly and updated during training. Previous studies [46] have 
shown that a char-CNN method is an effective approach for extracting 

morphological information. Therefore, we captured character-level 
embeddings using a char-CNN to solve the OOV problem. 

3.3. Sentiment-aware attention mechanism 

To capture the sentiment words from social media datasets, we chose 
a dictionary with a large number of sentiment words: SenticNet1. It is a 
publicly available resource for opinion mining built by exploiting arti-
ficial intelligence (AI) and semantic web techniques [47]. To build this 
dictionary, a method was applied to create a polarity for nearly 14,000 
concepts using NLP techniques [48]. It enables the use of semantics and 
linguistics to address tasks such as political topic analysis [49] and 
sentiment analysis [50,51] rather than simply relying on word co- 
occurrence frequency. 

To make full use of sentiment features, we introduce a sentiment- 
aware attention mechanism to assign a sentiment-sensitive weight to 
each word in a sentence, with the aim of learning fine-grained sentiment 
features and task-related information. In this mechanism, Word2Vec is 
used to initialize the word embeddings of sentiment words, expressed as 
Xs ∈ Rm×d, where m represents the number of sentiment words. The 
main process of the sentiment-aware attention mechanism is to learn a 
compatibility matrix G between the representation of a sentence Xw ∈

Rn×d and the representation of the sentiment words Xs ∈ Rm×d. The 
matrix G ∈ Rm×n is computed as follows: 

G = tanh(XwUXsT) (1)  

where U ∈ Rd×d represents a trainable parameter matrix. 
Then, a weight vector g ∈ Rm, which is the sentiment score for each 

word, is obtained through row-wise max pooling over G. Finally, the 
attention weight and the sentiment-aware representation Xs’ are 
computed as follows: 

αtt = softmax(g) (2)  

Xs’
= αttXw (3)  

3.4. Feature extractor 

To encode the representations of the original and sentiment-aware 
inputs, Bi-LSTM is utilized, which has been successfully used for 
several NLP tasks [38,52]. LSTM [40] is a powerful variant of the 
recurrent neural network (RNN) architecture designed to address the 
vanishing and exploding gradient problems [53] and to extract 
contextual information from sentences. A Bi-LSTM layer contains both 
forward and backward contexts. Therefore, it can capture information 
from both past contexts and future contexts. The hidden state of an 
LSTM unit is expressed as follows: 

ft = σ(Wf ∙[ht− 1, xt] + bf) (4)  

it = σ(Wi∙[ht− 1, xt] + bi) (5)  

Ct = tanh(WC∙[ht− 1, xt] + bC) (6)  

Ct = ft*Ct− 1 + it*Ct (7)  

ot = σ(Wo∙[ht− 1, xt] + bo) (8)  

ht = ot*tanh(Ct) (9) 

An LSTM unit contains three gates: a forget gate ft, an input gate it 
and an output gate ot. These gates determine the information at the 
current time step t. Ct denotes the memory cell. Wf ∈ Rd×(ew+ec+d), 

1 https://www.sentic.net/ 
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Wi ∈ Rd×(ew+ec+d), WC ∈ Rd×(ew+ec+d) and Wo ∈ Rd×(ew+ec+d) are weight 
matrices. bf ∈ Rd, bi ∈ Rd, bC ∈ Rd and bo ∈ Rd are bias parameters. σ()
and tanh() represent activation functions. ht ∈ Rd represents the hidden 
state. d represents the dimensionality of the hidden state of the LSTM 
unit. Finally, two sub-networks are obtained through equations (4)-(9) 
and are concatenated to form the final hidden state representation for 
the sentence. The formula is as follows: 

H = (h1’, h2’,⋯, hn’) =

⎡

⎣ h
→

1 h
→

2⋯ h
→

n

h
←

1 h
←

2⋯ h
←

n

⎤

⎦ (10)  

where h
→

t and h
←

t represent the forward and backward hidden states, 
respectively, and h’

t ∈ R2d represents the final hidden state representa-
tion after the Bi-LSTM layer at time step t. Finally, we obtain the 

contextual representations H and S for the original and sentiment-aware 
inputs, respectively. 

3.5. Adversarial training mechanism 

Recently, many studies have shown that deep neural networks are 
fragile against adversarial examples [34,38]. Adversarial training is a 
powerful regularization tool for improving the generalization ability of a 
model and is widely used in NLP. Adversarial training can also prevent a 
model from falling into a local minimum. Generally, adversarial training 
can be expressed in the following form [54]: 

ηx = min
θ

E(x,y) D[max
η∈Ω

L(x + η, y; θ)]‖η‖ ≤ ε (11) 

Here, D represents the training data. x and y represent the input 
hidden state and label, respectively. θ denotes the parameters of the 
model. L() represents the loss function of the model. η is a perturbation, 
Ω is the disturbance space, and ε is a small norm. Specifically, we 
generate an adversarial sample by adding a perturbation η. The purpose 
of adding η is to make the loss function as large as possible. Finally, we 
use the adversarial sample x+η as data to minimize the loss to update 
the parameters θ. The optimization process is performed by alternately 
maximizing and minimizing, which is known as the fast gradient method 
(FGM). The process can be computed as follows: 

ηx = ε g
‖g‖2

g = ∇L(x + η, y; θ) (12)  

where ε is determined on the validation set. 
In the study reported in this paper, we generated adversarial samples 

in the embedding layer. 

3.6. Predictor 

The predictor is used to judge whether a social media text is related 
to ADRs. First, self-attention pooling is applied to reduce the dimen-
sionality of the outputs of the two Bi-LSTM layers while considering the 
global features of sentences. The final sentence representation is the 
concatenation of the two outputs. Then, the probability of each pre-
dicted class is obtained via the softmax function. Finally, the cross- 
entropy loss is applied as the training objective function of ANNSA. 

Fig. 1. The architecture of ANNSA.  

Table 1 
Definitions of notations.  

Notation Explanation 

X, xi  A sequence representation obtained by concatenating word 
embeddings with character embeddings; the vector 
representation of the ith word.  

y  A label. 
Xw  A sentence sequence representation. 
Xs  A sentiment word representation. 

Xs ’  A sentiment-aware sentence representation. 

g  An attention weight vector. 
Ct  A memory cell. 
ht , ht− 1  The hidden representations of the cells at time steps t and t-1. 

h
→

t , h
←

t  
A forward hidden state and a backward hidden state. 

U, Wf , Wi, WC, 
Wo,Wa  

Trainable weight matrices. 

bf , bi, bC, bo, bs, 
ba,ws  

Trainable parameters. 

H, S  The hidden representation of a sentence after Bi-LSTM; a 
sentiment-aware hidden representation after Bi-LSTM. 

η  A perturbation. 
Ω, ε  The disturbance space and a small norm. 
θ  The parameters of the model.  
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The classification process and the training objective function are 
expressed as follows: 

a = softmax(vT tanh(WaH + ba) (13)  

h =
∑N

i=1
aiHi (14)  

where Wa ∈ R2d×2d is the weight matrix, ba ∈ R2d and v ∈ R2d are 
trainable parameters, and h denotes the contextual original features 
output by the self-attention mechanism. Here, we use selfattention() to 
denote the process represented by formulas (13)-(14). Furthermore, the 
sentiment-aware output s is obtained via the self-attention mechanism: 

s = selfattention(S) (15)  

p = softmax(ws∙[h; s] + bs) (16)  

L =
1
N
∑

i
− [yi∙log(pi) + (1 − yi)∙log(1 − pi)] (17) 

Here, Ws ∈ R2d and bs ∈ R2d are parameters to be trained. [;] repre-
sents the concatenation operation. L represents the loss of ADR classi-
fication. yi is the true label, and pi is the predicted label. 

4. Results 

4.1. Datasets 

To evaluate the performance of ANNSA, we conducted experiments 
on three widely adopted social media ADR datasets. 

Note that because of Twitter’s privacy policy, actual tweets cannot 
be shared. We obtained the tweet text by using web crawlers based on 
unique tweet IDs. The original Twitter dataset contains a total of 10,822 
tweets, including 1,238 positive samples and 9,584 negative samples. 
However, we could obtain only 6,471 tweets, including 744 positive 
samples and 5,727 negative samples. The original TwiMed (Twitter) 
dataset contains a total of 1,000 tweets, including 390 positive samples 
and 610 negative samples. However, we could obtain only 625 tweets, 
including 232 positive samples and 393 negative samples. 

1) Twitter [55]: The Twitter dataset consists of tweets collected 
using the brand and generic names of drugs as well as phonetic mis-
spellings thereof because these are common spelling errors in user posts 
on Twitter. 2) TwiMed (Twitter) [8]: The TwiMed corpus consists of 
two parts, TwiMed (PubMed) and TwiMed (Twitter), which contain 
sentences extracted from PubMed and Twitter, respectively. In this 
experiment, we used only TwiMed (Twitter), which was reacquired 
using tweet IDs. 3) CSIRO Adverse Drug Event Corpus (CADEC) [56]: 
The CADEC dataset was extracted from medical forum posts. The sen-
tences often deviate from punctuation rules and formal English grammar 
since they are written in colloquial language. Descriptions of the three 
datasets used in this experiment are given in Table 2. Since the number 
of long sentences in these datasets is sparse, we set a fixed length n and 
cut off each sentence at n. Note that sentences longer than n account for 
only 1% of all sentences. 

Moreover, we analysed the proportions of sentiment words that were 
searched in SenticNet, i.e., the maximum proportion of sentiment word 

coverage of the texts, the mean proportion of sentiment word coverage 
of the texts, and the proportion of sentiment word coverage of the ADR 
mentions. The results are provided in Table 3. The statistical results 
show that the coverage of sentiment words and ADR mentions was quite 
high. This indicates a strong dependence between sentiment words and 
ADR mentions. 

4.2. Experimental settings 

We used Keras to perform model training. The dimensionality of the 
word-level embeddings was 200, and the dimensionality of the 
character-level embeddings was 30. We set the maximum word length to 
30. The dimensionality of the Bi-LSTM hidden units was 100. The filter 
size of the char-CNN was 3, and the number of filters was 30. The batch 
size in our experiment was 16, and the number of epochs was 30. 

We compared ANNSA with other methods in terms of the precision 
(P), recall (R) and F-score (F1). F1 quantifies the overall performance of 
a model by balancing P and R. To verify the validity of ANNSA, we 
performed 10-fold cross-validation on all social media datasets since 
these datasets were not separated into training and test sets. 

4.3. Baseline methods 

Due to privacy concerns, social media datasets provide only tweet 
IDs, not tweet texts. Because some of the original tweets could not be 
found, we obtained the text of fewer tweets than in the original datasets. 
The datasets we used were similar to those used by Li et al. [15]. To 
ensure fair comparisons, we compared ANNSA with the baselines 
considered in Li et al. [15], which included the following methods: 1) 
RCNN [57]: This method combines a CNN and an LSTM network. 2) 
HTR-MSA [30]: This is a model with multi-head self-attention and hi-
erarchical tweet representation. 3) CNN þ corpus [15]: This method 
adds an extra annotated corpus to the datasets used to train a CNN, 
which can improve the ADR detection performance. 4) CNN-transfer 
[15]: The CNN-transfer framework is based on a transfer learning 
method. 5) ATL [15]: The adversarial transfer learning framework 
combines the transfer learning mechanism with an adversarial training 
strategy. 

4.4. Comparisons with baseline methods 

Table 4 provides the results of comparisons of ANNSA with the other 
considered methods on the three datasets. Table 4 shows that ANNSA 
achieved new state-of-the-art results on all datasets, which suggests that 
our proposed method was able to effectively improve ADR detection 
performance. HTR-MSA [30] is a relatively complex model that requires 
a large amount of annotated data for parameter optimization. Thus, the 
performance of this model was poorer than that of RCNN on these small- 
scale datasets. 

The NN + corpus [15], CNN-transfer [15], and ATL [15] methods 
improve ADR detection performance by introducing additional anno-
tated data. CNN-transfer and ATL introduce features from other domains 
into ADR detection. However, excessive reliance on large-scale anno-
tated data from other domains might restrict the generalization ability of 
the models due to noise from different sources. Compared to ATL, 
ANNSA improved the F1 scores by 2.60%, 0.64%, and 0.3% on Twitter, 
TwiMed (Twitter), and CADEC, respectively. Note that our proposed 
sentiment-aware attention and adversarial learning mechanisms Table 2 

Brief descriptions of the social media ADR datasets.  

Dataset Positive Negative Total Max 
sentence 
length 

Experimental 
data length 

Twitter 744 5,727 6,471 46 46 
TwiMed 

(Twitter) 
232 393 625 135 65 

CADEC 2,478 4,996 7,474 241 70  

Table 3 
The proportions of sentiment words.  

Dataset Max (%) Mean (%) ADR (%) 

Twitter  75.00  15.27  38.49 
TwiMed (Twitter)  66.67  15.84  39.27 
CADEC  80.00  17.04  42.93  
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achieved noticeable improvements on all datasets without any addi-
tional resources. 

Furthermore, the ratio between positive and negative examples is 
high in the Twitter dataset, approximately 1:7.7. ANNSA still achieved 
good performance on this dataset, which suggests that ANNSA is not 
sensitive to the problem of unbalanced labels. Although the language 
used on social media often deviates from punctuation rules and formal 
English grammar, ANNSA was not affected by such language expression. 

4.5. Ablation study 

To further verify the validity of our proposed method, we conducted 
an ablation study. Tables 5, 6 and 7 provide the results obtained on the 
three social media corpora. The ablation tests included the following: 1) 
without the sentiment-aware attention mechanism (removing the 
sentiment-aware attention mechanism); 2) without adversarial pertur-
bation (discarding the adversarial perturbation in the embedding layer); 
and 3) baseline (removing the sentiment-aware attention mechanism 
and the adversarial perturbation in the embedding layer). 

We found that the F1 values on all three datasets were lower with the 
elimination of either the sentiment-aware attention mechanism or 
adversarial perturbation. This finding demonstrates the contribution of 
the sentiment-aware attention mechanism and adversarial perturbation 
to ADR detection on social media. However, the decline in performance 
caused by the absence of the sentiment-aware attention mechanism was 
larger than that caused by the absence of adversarial perturbations on 
the Twitter and CADEC corpora. We can conclude that sentiment-aware 
attention is more important than adversarial perturbation for ADR 
detection. Furthermore, the results show that the sentiment-aware 
attention mechanism mainly contributed to improving the recall. 
Moreover, the datasets with relatively balanced data (namely, TwiMed 
(Twitter) and CADEC) showed some advantages over the Twitter dataset 
(in which the ratio of negative to positive examples is approximately 
7.7:1). However, the adversarial perturbation method could somewhat 
compensate for the limitations presented by unbalanced data, improving 
the F1 performance. 

4.6. Effectiveness of the adversarial perturbation 

To evaluate the effectiveness of the adversarial perturbation method 
on a low-resource dataset, we conducted numerous experiments with 
different sized training sets based on the three datasets. We randomly 
selected subsets from each social media dataset with varying data pro-
portions of 0.2, 0.4, 0.6, and 0.8. The models implemented for 

comparison included the following: “baseline”, which was a model with 
Bi-LSTM and self-attention, and “baseline (+adv)”, which was a baseline 
model with adversarial perturbation. We show the experimental results 
of ANNSA and the other models on the three datasets in Figs. 2, 3, and 4, 
with F1 as the evaluation index. 

Figs. 2, 3, and 4 show that the performance on all three datasets 
improved significantly as the size of the training set increased, especially 
on TwiMed (Twitter). Moreover, ANNSA, which includes sentiment- 
aware attention and adversarial perturbation, achieved a higher F1 
than the “baseline” model on all three datasets, thus demonstrating the 
effectiveness of these components on small datasets. Compared with the 
“baseline” model, “baseline (+adv)” achieved better results. These 
findings support the data augmentation power of adversarial training for 
cases with few training examples, indicating that adversarial training 
can facilitate the learning of information from a small-scale training set. 
Even on the CADEC dataset, the result of the baseline model that 

Table 4 
Comparison of ANNSA with state-of-the-art methods.  

Dataset Twitter TwiMed (Twitter) CADEC 

(%) P R F1 P R F1 P R F1 

RCNN [57]  50.00  42.88  46.17  61.26  65.96  63.52  81.99  76.63  79.22 
HTR-MSA [30]  37.06  58.33  45.33  60.67  61.70  61.18  81.77  77.64  79.65 
CNN + corpus [15]  47.94  43.82  45.79  52.75  61.28  56.69  85.40  75.99  80.42 
CNN-transfer [15]  60.23  35.62  44.76  61.84  60.00  60.91  84.75  79.38  81.98 
ATL [15]  56.26  39.25  46.24  63.68  63.40  63.54  84.30  81.28  82.76 
ANNSA  49.10  50.46  48.84  58.82  73.34  64.18  82.73  83.52  83.06  

Table 5 
Ablation study on Twitter.  

Dataset Twitter 

(%) P R F1 ΔF1  

ANNSA  49.10  50.46  48.84 – 
w/o sentiment  50.10  46.02  47.39 − 1.45 
w/o adversarial  46.14  49.16  47.09 − 1.75 
Baseline  48.26  46.80  46.85 − 1.99  

Table 6 
Ablation study on TwiMed (Twitter).  

Dataset TwiMed (Twitter) 

(%) P R F1 ΔF1  

ANNSA  58.82  73.34  64.18 – 
w/o sentiment  55.63  70.70  61.04 − 3.14 
w/o adversarial  55.92  72.59  62.06 − 2.12 
Baseline  57.24  65.43  60.24 − 3.94  

Table 7 
Ablation study on CADEC.  

Dataset CADEC 

(%) P R F1 ΔF1  

ANNSA  82.73  83.52  83.06 – 
w/o sentiment  80.10  84.06  81.97 − 1.09 
w/o adversarial  79.37  84.41  81.77 − 1.29 
Baseline  78.25  83.89  80.91 − 2.15  

Fig. 2. Experimental results on the scaled Twitter dataset.  
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included adversarial data was the same as that of ANNSA for data scales 
of 0.4 and 0.6. 

4.7. Case study 

In this section, we introduce several case studies to visually explore 
the influence of the sentiment-aware attention mechanism on ANNSA. 
The visualization results are illustrated in Fig. 5. We list the visualization 
results, sentiment words, and ADR mentions. The results show that the 
incorporation of sentiment-aware attention can help the model to focus 
on ADR mentions that contribute to the detection of ADRs. 

In the example shown in Fig. 5(a), ANNSA strongly considered the 
ADR mention “tendon damage” and the sentiment words “treated”, 
“tendon” and “achilles”, which were important for inferring whether 
this sentence mentions an ADR. In the example shown in Fig. 5(b), the 
words “sleepp” and “dirty” gained high attention scores, where “sleepp” 
is an ADR mention and “dirty” is a sentiment word. Although the ADR 
mention “sleepp” was misspelled (it should be “sleep”), ANNSA could 

still recognize this word and assign a high attention score to it via 
character-level embeddings. This shows that ANNSA is robust to 
nonstandard descriptive texts from social media. Furthermore, not all 
sentiment words played an important role, such as “wonder” and “win”. 
The visualization results show that the model could effectively focus on 
ADR mentions via the sentiment-aware attention mechanism. 

5. Discussion 

Our paper provides a new look (sentiment factor) at ADR detection 
on social media. The ADRs usually cause physical or mental distress to 
patients after drugs. When patients describe their feelings, personal 
emotion will be included in their words. To investigate the relationship 
between the ADR mentions and sentiment words, we compared the two 
types of words in the same sentence (section 4.1). We observed that 
there is a large amount of overlap between the ADR mentions and 
sentiment words, which indicated that the ADR mentions contained rich 
sentiment information. Hence, we proposed to introduce sentiment 
features into the detection of ADRs. 

Previous studies [10,14,33] have found that sentiment information is 
useful for the ADR detection task on social media. However, these 
methods only considered the coarse-grained sentiment features of text, 
did not gain some insights into the relationship between ADRs and 
emotions. To address these issues, we used a sentiment-aware attention 
mechanism to incorporate sentiment features into the ADR task. 
Experimental results demonstrate that the fine-grained sentiment fea-
tures can effectively obtain high-quality ADR information. Additionally, 
to improve the robustness of the model, we utilized adversarial pertur-
bation to generate adversarial examples. This method can provide an 
additional regularization benefit for examples that are slightly different 
from the training examples. 

The sentiment-aware attention proposed by our paper is base on 
word-level features. This method can be extended to other NLP tasks to 
achieve specific feature fusion, such as domain features or lexical fea-
tures. Furthermore, this method can not only effectively integrate a 
single feature, but also realize the effective integration of multiple 
features. 

This study has the following limitations: (1) Although ANNSA has 
achieved higher F1 scores, in this work, only sentiment words were 
considered without distinguishing positive or negative emotions. From 
the visualization of the sentiment-aware attention mechanism (Section 
4.7), we observed that not all sentiment words played a promoting role 
in the judgment of ADRs. Therefore, it is promising to consider different 
emotional polarities and perform specific operations in the detection of 
ADRs. (2) The judgment of ADRs belongs to the category in the 
biomedical field. The analysis of drugs or adverse reactions may be more 
accurate when combined with biomedical knowledge. However, in this 
paper, we only considered the sentiment information and the deep se-
mantic information of the text without biomedical information. (3) We 
evaluated the effectiveness of our method on a relatively small dataset in 
this paper. Because of the Twitter’s privacy policy, the tweet text can 
only be obtained based on unique tweet IDs. However, the tweets may 

Fig. 3. Experimental results on the scaled TwiMed (Twitter) dataset.  

Fig. 4. Experimental results on the scaled CADEC dataset.  

Fig. 5. Visualization of the sentiment-aware attention mechanism. Darker colours represent higher attention weights.  
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disappear after a while, we can’t obtain all tweets by tweet IDs. Since the 
generalization of the method is crucial to the over-all viability of this 
task, it is promising to verify the validity of the model on larger-scale 
datasets. (4) Patients often take multiple drugs at the same time. How-
ever, the method proposed by our paper is effective for the discovery of 
adverse reactions caused by a single drug, ignoring drug-drug 
interactions. 

Our future work will include the following: (1) We will consider the 
role of emotional polarities in ADR detection and explore different 
methods to fuse sentiment features with textual information. (2) We will 
explore how to integrate biomedical knowledge into social media to 
enhance specialist guidance for ADR detection. (3) We will further verify 
the effectiveness and generalization of our model on larger-scale 
accessable datasets. (4) Since the occurrence of adverse reactions is 
not only caused by a single drug, we want to explore the interaction 
relations between multiple drugs for ADR detection. 

6. Conclusion 

In this paper, we propose an adversarial network with a sentiment- 
aware attention mechanism that can effectively integrate sentiment 
features into a model for ADR detection by learning attention scores 
from sentiment words from social media texts, thereby improving the 
robustness of the model. Experiments demonstrate that our proposed 
ANNSA model achieves significant results in the ADR detection task on 
three social media datasets. Analyses suggest that the sentiment-aware 
attention mechanism can help the model to focus on ADR mentions 
and that adversarial learning can further enhance the performance of the 
model for a limited amount of data. 
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